CORRER DESCALZO: ANÁLISIS BIOMECÁNICO


Correr descalzo o con calzado


La carrera descalza ha incrementado su popularidad en estos últimos años, sus riesgos y beneficios han sido ampliamente especulados en la literatura actual. Sin embargo, no hay suficiente evidencia sobre las posibles ventajas e inconvenientes de la carrera descalza. El propósito de este artículo fue realizar una revisión de la literatura científica actual acerca de la carrera descalza para evaluar las variables biomecánicas y la influencia del tipo de pisada comparada con la carrera calzada.


La carrera descalza se caracteriza por la ausencia de protección externa y una amortiguación mínima al choque contra el suelo, siendo su principal diferencia con la carrera amortiguada la parte del pie que primero contacta con el suelo. Los corredores descalzos suelen aterrizar con el pie delantero o antepié antes de bajar el talón, pero a veces aterrizan con un pie plano o mediopié o, con menor frecuencia, con el talón o retropié. Por el contrario, los corredores calzados, en su mayoría, aterrizan con el retropié facilitado por el talón elevado y el acolchado del calzado moderno (1).

Las diferencias en las condiciones de carrera y en los patrones de pisada pueden estar relacionados con los posibles cambios espacio-temporales, cinéticos, cinemáticos y de actividad muscular entre un grupo y otro de corredores.


Análisis Biomecánico



La rodilla debe absorber menor energía en la carrera descalza y, por el contrario, el tobillo absorbe mayor energía en la carrera descalza de medio y antepié. Los ángulos del tobillo al aterrizar de antepié son de flexión plantar en comparación con la dorsiflexión en la pisada de retropié. Los gastrocnemios sufren una mayor actividad muscular en el grupo de antepié y de mediopié, y el tibial anterior sufre una mayor actividad en el grupo de retropié. Además, el centro de masas está más adelantado y la cadencia se incrementa en la carrera descalza.

Tipos de pisada



Variables espacio-temporales



En todos los estudios analizados existe homogeneidad respecto al efecto sobre la variable velocidad, se observó que tanto el calzado como el tipo de pisada no influyen en la velocidad de carrera. Sin embargo, la longitud de zancada fue significativamente menor en la carrera descalza pero se compensa con un aumento de la cadencia, lo que da lugar a una disminución en la fase de apoyo y de oscilación. Acorde a estudios previos, se puede considerar que el aumento de cadencia puede ser una estrategia eficaz para reducir las cargas a las que se somete a la rodilla y podría ser útil en la modulación de factores biomecánicos que pueden contribuir al dolor patelofemoral (2).

Velocidad - Cadencia - Fases de zancada


El impacto y la tasa de carga que sufre el cuerpo durante la carrera deben ser distribuidas por los mecanismos de absorción que posee intrínsecamente el cuerpo contra este daño potencial, mediante absorción activa (con la alineación articular y las fuerzas musculares) o pasiva (a través de la almohadilla de talón, liquido sinovial, hueso y cartílago articular) (3). Los estudios muestran que durante la carrera calzada la rodilla absorbió más energía que el tobillo en todas las condiciones de pisada. Sin embargo, en la descalza con apoyo en mediopié y antepié esta absorción se invierte y el tobillo pasa a ser la articulación que más carga absorbe, a favor de la rodilla que absorbe menos energía. Puesto que en la carrera descalza la fuerza de impacto y la tasa de carga son menores respecto a la calzada y con pisada de antepié es menor que de retropié, la rodilla es la más beneficiada en esta condición y de este tipo de pisada.

La amortiguación que se encuentra en el calzado moderno está diseñada para atenuar y reducir las fuerzas de impacto, siendo la suela un elemento que contribuye a reducir la presión mediante la utilización de materiales y geometría concreta en función del patrón del corredor (4). Sin embargo, se ha observado que el 85% de los corredores calzados utilizan una pisada de retropié, lo que puede derivar del diseño del calzado y, en última instancia aumentar la carga mecánica en la extremidad inferior al ser el grupo de pisada de retropié el que mayor impacto sufre (1, 4, 5).

En cambio, el impacto tibial fue mayor en la carrera descalza de antepié, relacionándose las tasas de impacto altas con la aparición de lesiones asociadas a la carrera como la fractura por estrés tibial y la periostitis tibial (6, 7), por lo que es necesario profundizar en esta temática, ya que sólo un estudio mostró esta información. Igualmente, existen discrepancias en la literatura ya que según Williams et al. (8) el tipo de pisada de antepié reduce el impacto tibial en la carrera descalza, y según Olin et al.(9) el tiempo de impacto tibial fue significativamente menor en este modalidad de carrera. Además, se ha observado que ciertos tipos de cuñas de talón pueden incrementar el estrés tibial (4).El impulso y el pico de presión plantar son mayores en el primer y segundo metatarsiano en la carrera descalza de antepié, pudiendo estar asociado a fracturas por estrés cuando la transición desde la carrera calzada se hace rápidamente (10). Asimismo, el calzado actual presenta refuerzo en la entresuela de esta región para disminuir el impacto (4).


lieberman
Impacto en cada tipo de pisada



Variables Cinemáticas



La biomecánica de la extremidad inferior puede estar influenciada por el tipo de pisada y por las condiciones de carrera descalza y calzada. Existieron diferencias significativas en el rango de movimiento (ROM) del tobillo y la rodilla en ambas condiciones de carrera, pero no hubo homogeneidad en la literatura sobre la cadera. Los ángulos del tobillo al aterrizar de antepié son de flexión plantar en comparación con la dorsiflexión en la pisada de retropié. En la carrera de antepié, el pie aterriza primero con una postura de flexión plantar seguido por un movimiento de dorsiflexión que es controlado por la contracción excéntrica de los músculos de la pierna, sirviendo de amortiguación para los corredores y siendo mayor este rango de movimiento en la condición descalza. Los ángulos de la rodilla al aterrizar de antepié son mayores en flexión tanto en descalzo como en calzado, además el ángulo de rodilla más flexionado en el contacto inicial proporciona un mayor efecto de amortiguación. Todo ello es debido a que si el tobillo se encuentra en una mayor flexión plantar en el contacto inicial, la rodilla estará más flexionada para establecer la posición de golpeo más cerca de la proyección del centro de masas (8).

fase-aterrizaje-antepié
ROM fase aterrizaje en la carrera descalza



Actividad Muscular



Para los corredores habitualmente calzados, el mayor desafío en el cambio a la pisada de antepié puede ser la actividad creciente de los gastrocnemios durante la fase de apoyo. Basado en señales electromiográficas (9, 11, 12), los gastrocnemios muestran una actividad significativamente mayor de antepié que de retropié tanto en fases de preactivación como de apoyo. Considerando los resultados observados, es necesario asesorar a los corredores para que realicen un adecuado entrenamiento de los gastrocnemios para proporcionar una amortiguación adecuada. Sin embargo, un entrenamiento excesivo podría provocar una elevada solicitación de esta musculatura incrementando el riesgo de sufrir lesiones en el tendón de Aquiles (13).


Actividad muscular


Lesiones



La principal cuestión en la mente de corredores, entrenadores y fisioterapeutas es si la carrera descalza tiene algún efecto sobre el ratio de lesiones. Se han especulado ampliamente los efectos positivos de la carrera descalza, pero existe un debate en curso sobre las ventajas y peligros potenciales de la carrera descalza y la adaptación de una técnica de correr descalzo. La interpretación de este tipo de estudios comparando correr descalzo con correr con calzado moderno es que las cargas son menores en determinadas zonas, pero mayores en otras. Por ejemplo, Shih et al. (11) mostraron que la carga en la rodilla era menor corriendo descalzo, pero la del tobillo era mayor. Mientras que Thompson et al. (14) mostraron que el impacto de talón se reducía corriendo descalzo y Olin et al.(9) indicaron que la carga tibial era mayor en el grupo de corredores descalzos. Esto significa que la carga es trasladada de un sitio a otro, no existiendo un beneficio sistemático de uno sobre el otro. Esto puede tener beneficios específicos individuales, no extrapolables a todo el mundo. Una mayor carga en un tipo de tejido podría incrementar el riesgo de lesión en algunos individuos, pero no en otros.

Pacientes con dolor de rodilla se beneficiarían más de un estilo que otro debido a las cargas. Si los corredores calzados manifiestan de un aumento de los síntomas en o alrededor de la rodilla, se debe considerar cambiar su pisada a un patrón de mediados de la parte anterior del pie o incluso intentar la carrera descalza. Por el contrario, la carrera descalza tiende a aumentar la carga de impacto alrededor de la parte inferior de la pierna y el tobillo, lo que aumenta el riesgo de lesiones en esta región anatómica.

En este escenario, se debe aconsejar al corredor a cambiar a un patrón de retropié o incluso a probar diferentes calzados. Por último, la transición a la carrera descalza desde la calzada debe proceder con precaución para evitar lesiones.


Lesión de rodillas



Conclusión



La carrera descalza puede modificar parámetros biomecánicos de la carrera en comparación con la carrera calzada; siendo los más destacables: la cadencia, la tasa de carga, la absorción de energía, el ROM del tobillo en la fase de apoyo y la actividad muscular de los gastrocnemios.Posiblemente, el factor más relevante en las modificaciones biomecánicas que se observan en la carrera descalza sea el tipo de pisada, que se realiza normalmente con antepié.


antepié
Antepié
Retropié


 

Bibliografía



1. Lieberman DE, Venkadesan M, Werbel WA, Daoud AI, D'Andrea S, Davis IS, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 2010 Jan 28;463(7280):531-5.


2. Lenhart RL, Thelen DG, Wille CM, Chumanov ES, Heiderscheit BC. Increasing running step rate reduces patellofemoral joint forces. Med Sci Sports Exerc. 2014 Mar;46(3):557-64.


3. Ly QH, Alaoui A, Erlicher S, Baly L. Towards a footwear design tool: influence of shoe midsole properties and ground stiffness on the impact force during running. J Biomech. 2010 Jan 19;43(2):310-7.

4. Fernández Villarejo M, Gijón Nogueron G. Factores del calzado deportivo de carrera que influyen en la práctica deportiva: revisión sistemática. Arch med deporte. 2014:105-10.


5. Lieberman DE, Castillo ER, Otarola-Castillo E, Sang MK, Sigei TK, Ojiambo R, et al. Variation in Foot Strike Patterns among Habitually Barefoot and Shod Runners in Kenya. PLoS One. 2015;10(7):e0131354.


6. Milgrom C, Finestone A, Segev S, Olin C, Arndt T, Ekenman I. Are overground or treadmill runners more likely to sustain tibial stress fracture? Br J Sports Med. 2003 Apr;37(2):160-3.


7. Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance


8. Williams DS, 3rd, Green DH, Wurzinger B. Changes in lower extremity movement and power absorption during forefoot striking and barefoot running. Int J Sports Phys Ther. 2012 Oct;7(5):525-32.


9. Olin ED, Gutierrez GM. EMG and tibial shock upon the first attempt at barefoot running. Hum Mov Sci. 2013 Apr;32(2):343-52.


10. Murphy K, Curry EJ, Matzkin EG. Barefoot running: does it prevent injuries? Sports Med. 2013 Nov;43(11):1131-8.


11. Shih Y, Lin KL, Shiang TY. Is the foot striking pattern more important than barefoot or shod conditions in running? Gait Posture. 2013 Jul;38(3):490-4.


12. Sinclair J, Atkins S, Richards J, Vincent H. Modelling of Muscle Force Distributions During Barefoot and Shod Running. J Hum Kinet. 2015 Sep 29;47:9-17.


13. Lieberman DE. What we can learn about running from barefoot running: an evolutionary medical perspective. Exerc Sport Sci Rev. 2012 Apr;40(2):63-72.


14. Thompson MA, Lee SS, Seegmiller J, McGowan CP. Kinematic and kinetic comparison of barefoot and shod running in mid/forefoot and rearfoot strike runners. Gait Posture. 2015 May;41(4):957-9.
 


BAREFOOT VS RUNNING SHOES: BIOMECHANICAL ANALYSIS

shod running
Barefoot running vs running shoes


Barefoot running has increased in popularity over recent years, risks and benefits have been widely speculated in current literature. However, there is insufficient evidence on potential advantages and disadvantages of barefoot running. The purpose of this article was to systematically review the recent literature about barefoot running to evaluate the biomechanical measurements and the influence of foot strike modalities compared to shod running.

Barefoot running is characterized by the absence of external protection and minimal cushioning against the ground, being its main difference with the cushioned race the part of the foot that first contacts the ground. Barefoot runners usually land with the front foot or forefoot before lowering the heel, but sometimes land with a flat foot or midfoot or, less frequently, with the heel or rearfoot. On the other hand, mostly shod runners, land with the rearfoot facilitated by the raised heel and the padding of modern footwear (1).

Differences in race conditions and foot strike can be related to possible spatio-temporal, kinematic and muscle activity changes between one group and another of runners.



Biomechanics Analysis


The knee must absorb less energy in barefoot running and, on the contrary, the ankle absorbs more energy in barefoot running midfoot and forefoot. The angles of the ankle when landing forefoot are plantar flexion compared to dorsiflexion in the rearfoot strike. The gastrocnemius suffer greater muscular activity in the forefoot and midfoot group, and the tibialis anterior is more active in the rearfoot group. In addition, the centre of mass is more advanced and the cadence increases in barefoot running.

 
foot-strike
Foot strike


Spatio-temporal Variables


In all the reviewed studies there is homogeneity regarding the effect on the speed variable, it was observed that both the footwear and the type of strike do not influence the running speed. However, the stride length was significantly shorter in barefoot running but it is compensated by an increase in the cadence, which results in a decrease in the support and oscillation phase. According to previous studies, it can be considered that the increase in cadence can be an effective strategy to reduce the loads to which the knee is subjected, and it could be useful in the modulation of biomechanical factors that can contribute to patellofemoral pain (2).

Speed - Cadence - Stride phases


The impact and load rate suffered by the body during the race must be distributed by the absorption mechanisms inherently possessed by the body against this potential damage, through active absorption (with joint alignment and muscular forces) or passive absorption (through of the heel pad, synovial fluid, bone and articular cartilage) (3). Studies show that during the road race the knee absorbed more energy than the ankle in all foot strike conditions. However, in barefoot running with support in midfoot and forefoot this absorption is reversed and the ankle becomes the joint that absorbs the most load, better for the knee that absorbs less energy. Since in barefoot running the force of impact and the load rate are lower compared to shod running and with forefoot strike is less than rearfoot, the knee is the most benefited in this condition and this type of foot strike.


The cushioning found in modern footwear is designed to attenuate and reduce the forces of impact, the shoe sole being an element that contributes to reduce pressure by using materials and concrete geometry depending on the pattern of the corridor (34). However, it has been observed that 85% of shod runners use a rearfoot strike, which may derive from the design of the footwear and, ultimately increase the mechanical load in the lower extremity as the rearfoot strike group which has the greatest impact (1, 4, 5).

In contrast, the tibial impact was greater in the barefoot forefoot strike, with high impact rates associated with the appearance of race associated injuries such as tibial stress fracture and tibial periostitis (6, 7), which is why It is necessary to delve into this topic, since only one study showed this information. Similarly, there are discrepancies in the literature because according to Williams et al. (8) the type of forefoot strike reduces the tibial impact in barefoot running, and according to Olin et al. (9) the tibial impact time was significantly shorter in this race modality. In addition, it has been observed that certain types of heel wedges can increase tibial stress (4).

The impulse and the plantar pressure peak are greater in the first and second metatarsals in the barefoot forefoot strike, may be associated with stress fractures when the transition from shod running is made quickly (10). Likewise, the current footwear has reinforcement in the midsole of this region to reduce the impact (4).

barefoot-shod-running
Foot strike impact


Cinematic Variables


The biomechanics of the lower limb can be influenced by the type of foot strike and by running conditions. There were significant differences in range of motion of the ankle and knee in both running conditions, but there was no homogeneity in the hip literature. The angles of the ankle at forefoot strike landing are plantar flexion compared to dorsiflexion in the rearfoot strike. In the forefoot strike, the foot lands first with a plantar flexion posture followed by a dorsiflexion movement that is controlled by the eccentric contraction of the leg muscles, serving as a buffer for the runners and this range of motion being greater in the condition barefoot. The angles of the knee when landing forefoot strike are greater in flexion in both barefoot and shod running, in addition the angle of knee more flexed in the initial contact provides a greater cushioning effect. All this is because if the ankle is in a greater plantar flexion in the initial contact, the knee will be more flexed to establish the hitting position closer to the centre of mass projection (8).

barefoot-landing
Range of motion barefoot landing phase

Muscle Activity


For the normally runners with shoes, the biggest challenge in the change to the forefoot strike may be the increasing activity of the gastrocnemius during the support phase. Based on electromyographic signals (9, 11, 12), the gastrocnemius show a significantly higher forefoot strike than rearfoot strike activity in preactivation and support phases. Considering the observed results, it is necessary to advise the runners to carry out an adequate training of the gastrocnemius to provide adequate cushioning. However, excessive training could cause a high load of this musculature increasing the risk of suffering injuries to the Achilles tendon (13).

muscle-activity
Muscle activity

Injuries


The main question in the mind of runners, coaches and physiotherapists is whether the barefoot running has any effect on the ratio of injuries. The positive effects of the barefoot running have been widely speculated, but there is an ongoing debate about the advantages and potential dangers of the barefoot running and the adaptation of a barefoot running style. The interpretation of this type of studies comparing barefoot running with modern shoes is that the loads are lower in certain areas, but higher in others. For example, Shih et al. (11) showed that the load on the knee was lower running barefoot, but the load on the ankle was greater. While Thompson et al. (14) showed that the heel impact was reduced by running barefoot and Olin et al. (9) indicated that the tibial load was greater in the group of barefoot runners. This means that the load is transferred from one place to another, there being no systematic benefit of one over the other. This can have specific individual benefits, not extrapolated to everyone. A higher load on one type of tissue may increase the risk of injury in some individuals, but not in others.


Patients with knee pain would benefit more from one style than another due to the loads. If the shod runners manifest an increase in symptoms on or around the knee, you should consider changing your foot strike to a mid-forefoot pattern or even attempting the barefoot running. Conversely, barefoot running tends to increase the impact load around the lower leg and ankle, which increases the risk of injury in this anatomical region.

In this scenario, the runner should be advised to change to a rearfoot strike or even try different shoes. Finally, the transition to the barefoot running from the road must proceed with caution to avoid injury.

Knee injuries

Conclusion


The barefoot running can modify biomechanical parameters of the race compared to shod running; being the most remarkable: the cadence, the load rate, the absorption of energy, the ROM of the ankle in the support phase and the muscular activity of the gastrocnemius.Possibly, the most relevant factor in the biomechanical modifications that are observed in the barefoot running is the type of foot strike, which is normally done with forefoot.


Forefoot strike
Rearfoot strike




Bibliography 

1. Lieberman DE, Venkadesan M, Werbel WA, Daoud AI, D'Andrea S, Davis IS, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 2010 Jan 28;463(7280):531-5.


2. Lenhart RL, Thelen DG, Wille CM, Chumanov ES, Heiderscheit BC. Increasing running step rate reduces patellofemoral joint forces. Med Sci Sports Exerc. 2014 Mar;46(3):557-64.


3. Ly QH, Alaoui A, Erlicher S, Baly L. Towards a footwear design tool: influence of shoe midsole properties and ground stiffness on the impact force during running. J Biomech. 2010 Jan 19;43(2):310-7.


4. Fernández Villarejo M, Gijón Nogueron G. Factores del calzado deportivo de carrera que influyen en la práctica deportiva: revisión sistemática. Arch med deporte. 2014:105-10.


5. Lieberman DE, Castillo ER, Otarola-Castillo E, Sang MK, Sigei TK, Ojiambo R, et al. Variation in Foot Strike Patterns among Habitually Barefoot and Shod Runners in Kenya. PLoS One. 2015;10(7):e0131354.


6. Milgrom C, Finestone A, Segev S, Olin C, Arndt T, Ekenman I. Are overground or treadmill runners more likely to sustain tibial stress fracture? Br J Sports Med. 2003 Apr;37(2):160-3.


7. Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance


8. Williams DS, 3rd, Green DH, Wurzinger B. Changes in lower extremity movement and power absorption during forefoot striking and barefoot running. Int J Sports Phys Ther. 2012 Oct;7(5):525-32.


9. Olin ED, Gutierrez GM. EMG and tibial shock upon the first attempt at barefoot running. Hum Mov Sci. 2013 Apr;32(2):343-52.


10. Murphy K, Curry EJ, Matzkin EG. Barefoot running: does it prevent injuries? Sports Med. 2013 Nov;43(11):1131-8.


11. Shih Y, Lin KL, Shiang TY. Is the foot striking pattern more important than barefoot or shod conditions in running? Gait Posture. 2013 Jul;38(3):490-4.


12. Sinclair J, Atkins S, Richards J, Vincent H. Modelling of Muscle Force Distributions During Barefoot and Shod Running. J Hum Kinet. 2015 Sep 29;47:9-17.


13. Lieberman DE. What we can learn about running from barefoot running: an evolutionary medical perspective. Exerc Sport Sci Rev. 2012 Apr;40(2):63-72.


14. Thompson MA, Lee SS, Seegmiller J, McGowan CP. Kinematic and kinetic comparison of barefoot and shod running in mid/forefoot and rearfoot strike runners. Gait Posture. 2015 May;41(4):957-9.







Barefoot vs running shoes Running shoes Barefoot running Running Shod running Biomechanics Foot wear Forefoot strike Midfoot strike Rearfoot strike Strike Cinematic Injuries Injury Muscle activity Spatio-temporal












SUBACROMIAL OR ROTATOR CUFF IMPINGEMENT: EXERCISES


Shoulder anatomy

What is subacromial impingement syndrome?


 There is a little space between acromion and humerus where ligaments, tendons and bursas are working together. When we raise our arms more than 90 degrees that space does smaller and we could feel pain in that zone if we have any shoulder pathology. In my professional experience, this pathology is one of the most frequency in the shoulder.
 Subacromial impingement syndrome could be for different causes. Several structures, such as the subacromial bursa, the tendons of the rotator cuff, the acromion, the coraco-acromial ligament, and the tendon of the long head biceps muscle, are involved in the pathogenesis of subacromial impingement syndrome.
  

Treatment with exercises


 I want to resume a review about the treatment of this pathology through home exercises with clinically significant effects on pain reduction and improving function in patients with persistent subacromial impingement syndrome. 1. It consist in a specific exercise strategy, focusing on strengthening eccentric exercises for the rotator cuff and concentric/eccentric exercises for the scapula stabilisers.
 

Acromioplasty with exercise vs exercise alone


 “But my doctor said I could need an acromioplasty”. Ok, you can try to do the next exercises while you are waiting for a surgery. Because: 

-      This exercise strategy reduces the need for arthroscopic subacromial decompression within the three months timeframe used in the study 1,

-      in the first six months, a 47% of patients without operative treatment improve their pain and mobility 2 and


-      in the 2.5 years, a 78% of patients without operative treatment improve their pain and mobility 3.
  

Range of Motion and Stretching Exercises 


This type of exercises should be performed daily. Each stretch should be held for 30 seconds and repeated 5 times, with a 10-second rest between each stretch. 


1.       Pendulum: stand up, support an arm in a table and the other one in the air. Do 20 small clockwise circles and 20 anticlockwise, make forward and backwards motions and side to side movements.
Codman
Pendulum Exercises


  2.       Posture exercises: Put hands on the hips, lean back and hold.

Shoulder exercise
Posture Exercises


  3.       Shoulder shrugs: Pull the shoulders up and back, and hold. Pinch the back of the shoulder blades together using good posture.

Shoulder Shrugs


  4.       Active assisted range of motion: with a cane or stick raise your arms forwards, external rotation and abduction.

Shoulder exercises
Active assisted range of motion


  5.       Active range of motion: in front of a mirror, raise you arms at the same time and try not elevate your shoulders.

Shoulder exercises
Active range of motion


  6.       Anterior shoulder stretch: Place hands at shoulder level on each side of a door or in a corner of a room. Lean forward into the door or corner and hold.

Shoulder exercises
Anterior Shoulder Stretch


  7.       Posterior shoulder stretch: put your arm over the opposite shoulder and feel the stretch in the back of your shoulder.
  
Shoulder exercises
Posterior Shoulder Stretch
  



Strengthening Exercises


Strengthening should be performed 3 times weekly. 

Each exercise was performed at 3 sets of 10 repetitions with a 60-second rest between each set the first week, followed by 3 sets of 15 the second week, followed by 3 sets of 20 the third week; then increasing TheraBand resistance.



8.       External Rotation: lying on one side with your elbow at 90 degrees, raise your hand with or without weight.
Shoulder exercises
External Rotation


  9.       Scaption: Hold the arm forward, thumb up or down, raise the arm. May add resistance. This exercise should be done only if there is no pain.


Shoulder exercises
Scaption


  10.   Chair press: While seated, press up on the chair, lifting the body off the chair. Try to keep the spine straight.

Shoulder exercises
Chair Press


  11.   Cat-Camel: put your hand just down your shoulders and your knees down hip. Keep a neutral hip position, then arch your spine from neck to bottom.
Pilates cat camel
Cat - Camel


  12.   Press-up: Lie on back, elbow locked straight, weights in hands. Move your arm up toward the ceiling as far as possible.

Shoulder exercises
Press Up


  13.   Rows: Seated or standing, bend your elbows and pull the elastic cord back. Try to pinch your shoulder blades behind you.

Shoulder exercises
Rows


  14.   Upright row: Do one arm at a time. While standing, lean over a table and bend at the waist. Pull the hand weight back, pulling shoulder blade back.

Shoulder exercises
Upright Row


  15.   Low Trapezius: stand up, open your chest and with the elbow extended reach the elastic band behind you.


Shoulder exercises
Low Trapezius

        

Bibliography


  1. Kuhn JE. Exercise in the treatment of rotator cuff impingement: a systematic review and a synthesized evidence-based rehabilitation protocol. J Shoulder Elbow Surg 2009;18:138-60. 

2. Rahme H, Solem-Bertoft E, Westerberg CE, Lundberg E, Sorensen S, Hilding S. The subacromial impingement syndrome. A study of results of treatment with special emphasis on predictive factors and paingenerating mechanisms. Scand J Rehab Med 1998;30:253-62. 

3. Brox JI, Gjengedal E, Uppheim G, et al. Arthroscopic surgery versus supervised exercises in patient with rotator cuff disease (stage II impingement syndrome): A prospective, randomised, controlled studyin 125 patients with a 2 ½ year follow-up. J Shoulder Elbow Surg 1997;8:102-11.




Shoulder impingement Rotator cuff tear Impingement syndrome Shoulder impingement syndrome Rotator cuff impingement syndrome Subacromial impingement syndrome Rotator impingement Subacromial impingement Impingement